電磁気学 B 試験問題 — 図, 文, 式を使って説明し, 答えを求めよ — 2023 年 1 月 27 日

1 水素原子

水素原子では、質量の十分に大きな陽子のまわりを質量の小さな電子が半径 a、角速度 ω の円運動をするという。電子の質量を m_e 、電気素量 (素電荷) を e (> 0)、真空の誘電率を ε_0 とする。解答用紙で記述する説明文で一時的に、電子の運動による電流 I、円運動の円の面積 S の記号を使ってよいが、各間の答えでは使わない。

- 問 1-1 電子の円運動の概要を図に描き、陽子を原点とした電子の位置ベクトル r、速度 v、軌道角運動量 $L = r \times m_e v$ 、電子の運動による磁気双極子モーメント m = ISn を表す矢印を描き入れよ.
- **問 1-2** 円運動の向心力は m_e , ω , a の積(べき乗を含む)である. 次元解析($m_e^x \omega^y a^z$ が力の単位で表されるように x, y, z を決める)により向心力の大きさを求めよ.
- **問** 1-3 クーロン力が向心力になることより ω を消去し、電流と磁気双極子モーメントの大きさ I, m を求めよ.
- 問 1-4 磁気双極子モーメントと軌道角運動量の大きさの比 m/L を求めよ.
- 問 1-5 電子の運動により生じる磁場の概略を, (問 1-1 とは別の新たな)図に示せ.
- **問 1-6** ビオ・サバールの法則を使い、円の中心における磁束密度の大きさ B_0 を求めよ. (暗記した式を書かず、右に示したビオ・サバールの法則を使う)
- 問 1-7 磁化 M は、単位体積あたりの磁気双極子モーメントである. 水素原子の占める体積を半径 a の球として、比 $\frac{B_0}{\mu_0 M}$ を求めよ.

ビオ・サバールの法則

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int_C \frac{\boldsymbol{I}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|^3} ds$$

2 共鳴

図 1 のように、粒子(質量 m、電気量 q)をばね(ばね係数 k)に取り付け、鉛直方向に電場 $E(t) = E_0 \cos \omega t$ を加えた. このとき、粒子はつり合いの位置 (x=0) を中心に鉛直方向に振動運動した.

- **問 2-1**. 粒子の速さ v(t) を粒子の変位 x(t) で表せ. (時間についての微分を使う)
- **問 2-2**. 粒子の加速度 a(t) を速さ v(t) で表せ.
- 問 2-3. ばねの弾性力,空気抵抗による力 $-\eta v(t)$,静電気力を考え,運動方程式 f(t)=ma(t) を v(t) と x(t) の一階微分方程式で表せ.
- 問 2-4. 複素関数 $\widetilde{E}(t)=\widetilde{E}\,e^{i\omega t},\ \widetilde{v}(t)=\widetilde{v}\,e^{i\omega t},\ \widetilde{x}(t)=\widetilde{x}\,e^{i\omega t}$ を、それぞれ E(t)、v(t)、x(t) とみなして問 2-1 と問 2-3 の微分方程式に代入し、 \widetilde{v} 、 \widetilde{x} の連立方程式を求めよ. ただし、 $\widetilde{E}=E_0,\ \widetilde{v}=v_0\,e^{i\beta},\ \widetilde{x}=x_0\,e^{i\gamma}$ である.
- 問 2-5. 前問の連立方程式より \tilde{v} を求めよ.
- 問 2-6. 複素振幅 \tilde{v} の実振幅 v_0 と位相 β を求め, $v_0(\omega)$ と $\beta(\omega)$ をグラフに描け.
- 問 2-7. 実振幅 $v_0(\omega)$ の最大値 v_{m} , そのときの角周波数 ω_{m} と位相 β_{m} を求めよ.
- 問 2-8. $\omega = \omega_{\rm m}$ のとき、 $v(t) = \operatorname{Re}\left[\widetilde{v}(t)\right]$ と $x(t) = \operatorname{Re}\left[\widetilde{x}(t)\right]$ のグラフを描け.
- **問** 2-9. $\omega=\omega_{\mathrm{m}}$ のとき,粒子の運動エネルギー $\dfrac{1}{2}mv^{2}(t)$,ばねに蓄えられたエネ

 $E \downarrow v$

図1 ばねに固定された 粒子の鉛直方向の運動

ルギー $\frac{1}{2}kx^2(t)$,単位時間あたりの空気抵抗による発熱 $\eta v^2(t)$ と静電気力のする仕事 qE(t)v(t) を考え,エネルギーの流れについて述べよ. ただし,運動する荷電粒子による電磁放射は無視する.