1 平面電磁波

誘電率 ε 、透磁率 μ の自由空間を、電場が $E_1=e^{(1)}E_0\cos(k\cdot x-\omega t)$ で表される直線偏波が伝播する。ここで、 $e^{(1)}$ は電場の振動の向きを表す単位ベクトル、 E_0 は電場の振幅である。マクスウェル方程式 (1) を参考にして、次の問いに答えよ。必要なら恒等式 $A\times(B\times C)=(A\cdot C)B-(A\cdot B)C$ を使ってもよい。

$$\operatorname{rot} \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0, \quad \operatorname{rot} \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = 0, \quad \operatorname{div} \mathbf{D} = 0, \quad \operatorname{div} \mathbf{B} = 0$$
 (1)

1.1 波数ベクトル (5点)

電磁波の進む向きを、理由とともに答えよ。

1.2 横波 (5点)

電場の振動方向と電磁波の進行方向の関係について述べよ。

1.3 磁場 (10点)

この平面電磁波の磁場 B_1 を求めよ。

1.4 ポインティグベクトル (10点)

平面電磁波のポインティグベクトル $(S = E_1 \times H_1)$ を求め、Sの意味することを説明せよ。

1.5 重ね合わせ (10点)

平面波 E_1, B_1 に、他の電磁波 E_2, B_2 を重ね合わせて、円偏波にしたい。 電場 E_2 を求めよ。

1.6 直線偏波の発生(10点)

直線偏波を発生させる方法を考案せよ。

2 電磁誘導

図 1 のように、端面が平行でない電磁石で磁場を発生させた。 座標軸は磁場方向に z 軸を取り、図 2 のように、辺 AB と辺 CD が x 軸と平行に、辺 BC と辺 DA が y 軸と平行になるように 1 回巻のコイルを置いた。 電磁石の発生する磁場は、コイルを含む平面では $B=(0,\ 0,\ aI-bIy)$ と表される。 ここで I は電磁石に流す電流である。 係数a と b の単位は、それぞれ、[T/A] と [T/Am] である。また、コイルの位置では |bIy|<|aI| である。

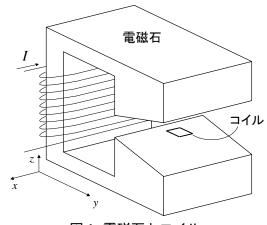


図 1: 電磁石とコイル

2.1 レンツの法則 (5 点)

電流 $I(t)\ (>0)$ を時間とともに大きくした。 電磁石の発生する磁場の向きと、コイルに流れる電流の向きを答えよ。

2.2 磁束 (5 点)

A が点 $(-\ell_1/2,\,\ell_2/2,\,0)$ にあるとき、コイルを貫く磁束 $\Phi(t)$ を求めよ。

2.3 誘導起電力 (10 点)

コイルに発生する誘導起電力を求めよ。

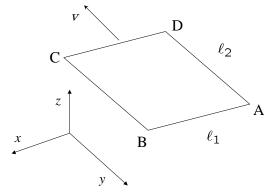


図 2: コイルの拡大図

2.4 ローレンツカ (10 点)

次に電磁石に流す電流を一定値 I_0 に固定し、コイルを y 軸負の向きに速さ v で等速直線運動させた。 A が点 $(-\ell_1/2,\ell_2/2,0)$ にある時刻を t=0 として、辺 AB と辺 CD にある電子 (素電荷 e) にはたらく力の大きさと向きを求めよ。

2.5 起電力 (10 点)

前問を利用して、ABCDA の向きを正の向きとして、コイルに発生する電圧を求めよ。

2.6 相対性の原理(10点)

上のような、静止したコイルを貫く磁束が時間変化する場合と、空間的に不均一な磁場の中をコイルが運動する場合を比較し、磁束の時間変化 $\partial\Phi/\partial t$ と誘導起電力の大きさについて議論せよ。