・當舎 武彦の研究業績
(名前の左に*を付けた論文は、當舎 武彦がCorresponding author。)

・原著論文
74. H. Takeda, K. Shimba, M. Horitani, T. Kimura, T. Nomura, M. Kubo, Y. Shiro and *T. Tosha “Trapping of a Mononitrosyl Nonheme Intermediate of Nitric Oxide Reductase by Cryo-Photolysis of Caged Nitric Oxide” J. Phys. Chem. B, 127, 846-854, 2023 Front cover
 doi: 10.1021/acs.jpcb.2c05852

73. Y. Nishida, S. Yanagisawa, R. Morita, H. Shigematsu, K. Shinzawa-Itoh, H. Yuki, S. Ogasawara, K. Shimizu, T. Iwamoto, C. Nakabayashi, W. Matsumura, H. Kato, C. Gopalasingam, T. Nagao, T. Qaqorh, Y. Takahashi, S. Yamazaki, K. Kamiya, R. Harada, N. Mizuno, H. Takahashi, Y. Akeda, M. Ohnishi, Y. Ishii, T. Kumasaka, T. Murata, K. Muramoto, T. Tosha, Y. Shiro, T. Honma, Y. Shigeta, M. Kubo, S. Takashima, and Y. Shintani “Identifying antibiotics based on structural differences in the conserved allostery from mitochondrial heme-copper oxidases” Nat. Commun., 13, 7591, 2022
 doi: 10.1038/s41467-022-34771-y

72. F. Kawai, Y. Furushima, N. Mochizuki, N. Muraki, M. Yamashita, A. Iida, R. Mamoto, T. Tosha, R. Iizuka, and S. Kitajima, “Efficient depolymerization of polyethylene terephthalate (PET) and polyfuranoate by engineered PET hydrolase Cut190” AMB Express, 12, 134, 2022
 doi: 10.1186/s13568-022-01474-y

71. M. Lucic, M. Wilson, T. Tosha, H. Sugimoto, A. Shilova, D. Axford, R Owen, M. Hough, J. Worrall, “Serial femtosecond crystallography reveals the role of water in the one- or two-electron redox chemistry of Compound I in the catalytic cycle of a B-type dye-decolorizing peroxidase DtpB” ACS Cat., 12, 13349-13359, 2022
 doi: 10.1021/acscatal.2c03754

70. T. Moreno-Chicano, L. M. Carey, D. Axford, J. H. Beale, R. B. Doak, H. Duyvesteyn, A. Ebrahim, R. W. Henning, D. C. F. Monteiro, D. A. Myles, S. Owada, D. A. Sherrell, M. Straw, V. Srajer, H. Sugimoto, K. Tono, T. Tosha, I. Tews, M. Trebbin, R. W. Strange, K. Weiss, J. A. R. Worrall, F. Meilleur, R. L. Owen, R. A. Ghiladi and M. A. Hough “Complementarity of neutron, XFEL and synchrotron crystallography for defining the structures of metalloenzymes at room temperature” IUCrJ, 9, 610-624, 2022
 doi: 10.1107/S2052252522006418

69. S. L. Rose, S. Baba, H. Okumura, S. V. Antonyuk, D. Sasaki, T. M. Hedison, M. Shanmugam, D. J. Heyes, N. S. Scrutton, T. Kumasaka, T. Tosha, R. R. Eady, M. Yamamoto, and S. S. Hasnain “Single crystal spectroscopy and multiple structures from one crystal (MSOX) define catalysis in copper nitrite reductases” Proc. Natl. Acad. Sci. USA, 119, e2205664119, 2022
 doi: 10.1073/pnas.2205664119

68. H. Nakamura, T. Hisano, M. Rahman, T. Tosha, M. Shirouzu, and Y. Shiro “Structural insight into heme detoxification by an ABC-type efflux pump in Gram-positive bacteria” Proc. Natl. Acad. Sci. USA, 119, e2123385119, 2022
 doi: 10.1073/pnas.2123385119

67. H. Matsumura, A. S. Faponle, P.-L. Hegedoorn, T. Tosha, S. P. de Visser, and P. Mo?nne-Loccoz “Mechanism of substrate inhibition in cytochrome-c dependent NO reductases rom denitrifying bacteria (cNORs)” J. Inorg. Biochem., 231, 111781, 2022
 doi: 10.1016/j.jinorgbio.2022.111781

66. T. Nomura, T. Kimura, Y. Kanematsu, D. Yamada, K. Yamashita, K. Hirata, G. Ueno, H. Murakami, T. Hisano, R. Yamagiwa, H. Takeda, C. Gopalasingam, R. Kousaka, S. Yanagisawa, O. Shoji, T. Kumasaka, M. Yamamoto, Y. Takano, H. Sugimoto, *T. Tosha, M. Kubo, and Y. Shiro “Short-lived intermediate in N2O generation by P450 NO reductase captured by time-resolved IR spectroscopy and XFEL crystallography” Proc. Natl. Acad. Sci. USA, 118, e2101481118, 2021
 doi: 10.1073/pnas.2101481118

65. H. Kwon, J. Basran, C. Pathak, M. Hussain, S. L. Freeman, A. J. Fielding, A. J. Bailey, N. Stefanou, H. A. Sparkes, T. Tosha, K. Yamashita, K. Hirata, H. Murakami, G. Ueno, H. Ago, K. Tono, M. Yamamoto, H. Sawai, Y. Shiro, H. Sugimoto P. C. E. Moody, and E. L. Raven “XFEL Crystal Structures of Peroxidase Compound II” Angew. Chem. Int. Ed., 60, 14578-14585, 2021
 doi: 10.1002/anie.202103010

64. M. Nishinaga, H. Sugimoto, Y. Nishitani, S. Nagai, S. Nagatoishi, N. Muraki, T. Tosha, K. Tsumoto, S. Aono, Y. Shiro and H. Sawai “Heme Controls the Structural Rearrangement of Its Sensor Protein Mediating the Hemolytic Bacterial Survival” Commun. Biol., 4, 467, 2021
 doi: 10.1038/s42003-021-01987-5

63. M. Kato, Y. Masuda, N. Yoshida, T. Tosha, Y. Shiro, and I. Yagi “Impact of membrane protein-lipid interactions on formation of bilayer lipid membranes on SAM-modified gold electrode” Electrochim. Acta, 373, 13788, 2021
 doi: 10.1016/j.electacta.2021.137888

62. S. Rose, S. Antonyuk, D. Sasaki, K. Yamashita, K. Hirata, G. Ueno, H. Ago, R. Eady, T. Tosha, M. Yamamoto, and S. Hasnain “An unprecedented insight into the catalytic mechanism of copper nitrite reductase from atomic resolution and damage-free structures” Sci. Adv., 7, no 1, eabd8523, 2021
 doi: 10.1126/sciadv.abd8523

61. M. Lucic, D. A. Svistunenko, M. Wilson, A. Chaplin, B. Davy, A. Ebrahim, D. Axford, T. Tosha, H. Sugimoto, S. Owada, F. Dworkowski, I. Tews, R. Owen, M. Hough, and J. A. R. Worrall “Serial femtosecond zero dose crystallography captures a water-free distal heme site in a dye-decolourising peroxidase to reveal a catalytic role for an arginine in FeIV=O formation” Angew. Chem. Int. Ed., 59, 21656-21662, 2020
 doi: 10.1002/anie.202008622

60. H. Takeda, T. Kimura, T. Nomura, M. Horitani, A. Yokota, A. Matsubayashi, S. Ishii, Y. Shiro, M. Kubo and *T. Tosha “Timing of NO Binding and Protonation in the Catalytic Reaction of Bacterial Nitric Oxide Reductase as Established by Time-Resolved Spectroscopy” Bull. Chem. Soc. Jpn., 93, 825-833, 2020 (優秀論文)
 doi: 10.1246/bcsj.20200038

59. A. Jamali, C. Gopalasingam, R. Johnson, T. Tosha, K. Muramoto, S. Muench, S. Antonyuk, Y. Shiro and S. Hasnain “The active form of quinol-dependent nitric oxide reductases from Neisseria meningitidis is a dimer” IUCrJ, 7, 404-415, 2020
 doi: 10.1107/S2052252520003656

58. C. Gopalasingam, G. Chidusa, T. Tosha, M. Yamamoto, Y. Shiro, S. V. Antonyuk, S. Muench and S. S. Hasnain “Dimeric structures of quinol-dependent Nitric Oxide Reductase (qNOR) revealed by cryo-Electron Microscopy” Sci. Adv., 5, no8, eaax1803, 2019
 doi: 10.1126/sciadv.aax1803

57. Y. Shisaka, Y. Iwai, S. Yamada, H. Uehara, T. Tosha, H. Sugimoto, Y. Shiro, J. Stanfield, K. Ogawa, Y. Watanabe and O. Shoji “Hijacking the Heme Acquisition Systems of Pseudomonas aeruginosa for the Delivery of Phthalocyanine as Antimicrobials” ACS Chem. Biol., 14, 1637-1642, 2019
 doi: 10.1021/acschembio.9b00373

56. R. Yamaguchi, H. Furutachi, S. Shirotsuki, X. Zhang, T. Ishikawa, S. Akine, T. Tosha, S. Fujinami, M. Suzuki and T. Kitagawa “Synthesis and Crystal Structure of the Bis(?-hydroxo)diiron(II) Complex with Tridentate Ligands Having a Sterically Bulky Imidazolyl Group” X-ray Structure Analysis Online, 35, 27-29, 2019
 doi: 10.2116/xraystruct.35.27

55. Y. Furukawa, C. T. Lim, T. Tosha, K. Yoshida, T. Hagai, S. Akiyama, S. Watanabe, K. Nakagome and Y. Shiro “Identification of a novel zinc-binding protein, C1orf123, as an interactor with a heavy metal-associated domain” PLoS One, 13, e0204355, 2018
 doi: 10.1371/journal.pone.0204355

54. M. Kato, S. Nakagawa, T. Tosha, Y. Shiro, Y. Masuda, K. Nakata and I. Yagi “Surface-Enhanced Infrared Absorption Spectroscopy of Bacterial Nitric Oxide Reductase under Electrochemical Control Using a Vibrational Probe of Carbon Monoxide” J. Phys. Chem. Lett., 9, 5196-5200, 2018
 doi: 10.1021/acs.jpclett.8b02581

53. M. Ganasen, H. Togashi, H. Takeda, H. Asakura, T. Tosha, K. Yamashita, K. Hirata, Y. Nariai, T. Urano, X. Yuan, I. Hamza, A. G. Mauk, Y. Shiro, H. Sugimoto and H. Sawai “Structural basis for promotion of duodenal iron absorption by enteric ferric reductase with ascorbate” Commun. Biol., 1, 120, 2018
 doi: 10.1038/s42003-018-0121-8

52. R. Yamagiwa, T. Kurahashi, M. Takeda, M. Adachi, H, Nakamura, H. Arai, Y. Shiro, H. Sawai and *T. Tosha “Pseudomonas aeruginosa overexpression system of nitric oxide reductase for in vivo and in vitro mutational analyses” Biochim. Biophys. Acta, 1859, 333-341, 2018
 doi: 10.1016/j.bbabio.2018.02.009

51. N. Gonska, D. Young, R. Yuki, T, Okamoto, T. Hisano, S. Antonyuk, S. S. Hasnain, K. Muramoto, Y. Shiro, *T. Tosha and P. ?delroth. “Characterization of the quinol-dependent nitric oxide reductase from the pathogen Neisseria meningitidis, an electrogenic enzyme” Sci. Rep., 8, 3637, 2018
 doi: 10.1038/s41598-018-21804-0

50. T. Halsted, K. Yamashita, K. Hirata, H. Ago, G. Ueno, T. Tosha, R. Eady, S. Antonyuk, M. Yamamoto and S. Hasnain “An unprecedented dioxygen species revealed by serial femtosecond rotational crystallography in copper nitrite reductase” IUCrJ, 5, 22-31, 2018
 doi: 10.1107/S2052252517016128

49. T. Tosha, T. Nomura, T. Nishida, N. Saeki, K. Okubayashi, R. Yamagiwa, M. Sugahara, T. Nakane, K. Yamashita, K. Hirata, G. Ueno, T. Kimura, T. Hisano, K. Muramoto, H. Sawai, H. Takeda, E. Mizohata, A. Yamashita, Y. Kanematsu, Y. Takano, E. Nango, R. Tanaka, O. Nureki, Y. Ikemoto, H. Murakami, S. Owada, K. Tono, M. Yabashi, M. Yamamoto, H. Ago, S. Iwata, H. Sugimoto, Y. Shiro and M. Kubo “Capturing an Initial Intermediate during the P450nor Enzymatic Reaction using Time-Resolved XFEL Crystallography and Caged-Substrate” Nat. Commun., 8, 1585, 2017
 doi: 10.1038/s41467-017-01702-1

48. Y. Naoe, N. Nakamura, Md. M. Rahman, T. Tosha, S. Nagatoishi, K. Tsumoto, Y. Shiro and H. Sugimoto “Structural Basis for Binding and Transfer of Heme in Bacterial Heme-Acquisition Systems” Proteins, 85, 2217-2230, 2017
 doi: 10.1002/prot.25386

47. E. Terasaka, K. Yamada, P.-H. Wang, K. Hosokawa, R. Yamagiwa, K. Matsumoto, S. Ishii, T. Mori, K. Yagi, H. Sawai, H. Arai, H. Sugimoto, Y. Sugita, Y. Shiro and *T. Tosha “Dynamics of nitric oxide controlled by protein complex in bacterial system” Proc. Natl. Aca. Sci. USA, 114, 9888-9893, 2017
 doi: 10.1073/pnas.1621301114

46. M. Sakaguchi, T. Kimura, T. Nishida, T. Tosha, H. Sugimoto, Y. Yamaguchi, S. Yanagisawa, G. Ueno, H. Murakami, H. Ago, M. Yamamoto, T. Ogura, Y. Shiro and M. Kubo “A nearly On-axis Specroscopic System for Simultaneously Measuring UV-visible Absorption and X-ray Diffraction in the SPring-8 Structural Genomics Beamline” J. Synchrotron Rad. 23, 334-338, 2016
 doi: 10.1107/S1600577515018275

45. R. K. Behera, R. Torres, T. Tosha, J. M. Bradley, C. W. Goulding and E. C. Theil “Fe2+ substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization” J. Biol. Inorg. Chem., 20, 957-969, 2015
 doi: 10.1007/s00775-015-1279-x

44. T. Tsugawa, H. Furutachi, M. Marunaka, T. Endo, K. Hashimoto, S. Fujinami, S. Akine, S. Nagatomo, T. Tosha, T. Nomura, T. Kitagawa, T. Ogura and M. Suzuki “Oxidation Reactivity of a Structurally and Spectroscopically Well-defined Mononuclear Peroxocarbonate-Iron(III) Complex” Chem. Lett., 44, 330-332, 2015
 doi: 10.1246/cl.141058

43. E. Terasaka, N. Okada, N. Sato, Y. Sako, Y. Shiro and *T. Tosha “Characterization of Quinol-dependent Nitric Oxide Reductase from Geobacillus Stearothermophilus: Enzymatic Activity and Active Site Structure” Biochim. Biophys. Acta, 1837, 1019-1026, 2014
 doi: 10.1016/j.bbabio.2014.02.017

42. N. Sato, S. Ishii, H. Sugimoto, T. Hino, Y. Fukumori, Y. Sako, Y. Shiro and *T. Tosha “Structures of Reduced and Ligand-Bound Nitric Oxide Reductase Provide Insights into Functional Differences in Respiratory Enzymes” Proteins, 82, 1258-1271, 2014
 doi: 10.1002/prot.24492

41. Y. Kwak, J. K. Schwartz, S. Haldar, R. K. Behera, T. Tosha, E. C. Theil and E. I. Solomon “Spectroscopic Studies of Single and Double Variants of M Ferritin: Lack of Conversion of a Biferrous Substrate Site into a Cofactor Site for O2 Activation” Biochemistry, 53, 473-482, 2014
 doi: 10.1021/bi4013726

40. T. Tosha, R. K. Behera and E. C. Theil “Ferritin Ion Channel Disorder Inhibits Fe(II)/O2 Reactivity at Distant Sites” Inorg. Chem., 51, 11406-11411, 2012
 doi: 10.1021/ic3010135

39. L. Salomonsson, J. Reimann, T. Tosha, N. Krause, N. Gonska, Y. Shiro and P. ?delroth “Proton Transfer in the Quinol-dependent Nitric Oxide Reductase from Geobacillus Stearothermophilus during Reduction of Oxygen” Biochim. Biophys. Acta, 1817, 1914-1920, 2012
 doi: 10.1016/j.bbabio.2012.04.007

38. Y. Matsumoto, T. Tosha, A. V. Pisliakov, T. Hino, H. Sugimoto, S. Nagano, Y. Sugita and Y. Shiro “Crystal Structure of Quinol-Dependent Nitric Oxide Reductase from Geobacillus Stearothermophilus” Nat. Struct. Mol. Biol., 19, 238-245, 2012
 doi: 10.1038/nsmb.2213

37. T. Tosha, R. K. Behera, H.-L. Ng, O. Bhattasali, T. Alber and E. C. Theil “Ferritin Protein Nanocage Ion Channels: Gating by N-terminal Extensions” J. Biol. Chem., 287, 13016-13025, 2012
 doi: 10.1074/jbc.M111.332734

36. S. Haldar, L. E. Bevers, T. Tosha and E. C. Theil “Moving Iron Through Ferritin Protein Nanocages Depends on Residues Throughout Each Four ?-Helix Bundle Subunit” J. Biol. Chem., 286, 25620-25627, 2011
 doi: 10.1074/jbc.M110.205278

35. J. K. Schwartz, X. S. Liu, T. Tosha, A. Diebold, E. C. Theil and E. I. Solomon “CD and MCD Spectroscopic Studies of the Two Dps Mini-ferritin Proteins from B. Anthracis: Role of O2 and H2O2 Substrates in Reactivity of the Di-iron Catalytic Centers” Biochemistry, 49, 10516-10525, 2010
 doi: 10.1021/bi101346c

34. T. Tosha, H.-L. Ng, O. Bhattasali, T. Alber and E. C. Theil “Moving Metal Ions Through Ferritin Protein Nanocages from Three-fold Pores to Catalytic Sites” J. Am. Chem. Soc., 132, 14562-14569, 2010
 doi: 10.1021/ja105583d

33. K. Honda, J. Cho, T. Matsumoto, J. Roh, H. Furutachi, T. Tosha, M. Kubo, S. Fujinami, T. Ogura, T. Kitagawa and *M. Suzuki “Oxidation Reactivity of a Bis(?-oxo) Dinickel(III) Complex: Arene Hydroxylation of the Supporting Ligand” Angew. Chem. Int. Ed., 48, 3304-3307, 2009
 doi: 10.1002/anie.200900222

32. Y. Funahashi, T. Nishikawa, Y. Wasada-Tsutsui, Y. Kajita, S. Yamaguchi, H. Arii, T. Ozawa, K. Jitsukawa, T. Tosha, S. Hirota, T. Kitagawa and H. Masuda “Formation of a Bridged Butterfly-Type ?-?2:?2-Peroxo Dicopper Core Structure with a Carboxylate Group” J. Am. Chem. Soc., 130, 16444-16445, 2008
 doi: 10.1021/ja804201z

31. T. Tosha, M. R. Hasan and E. C. Theil “The Ferritin Fe2 Site at the Diiron Catalytic Center Controls the Reaction with O2 in the Rapid Mineralization Pathway” Proc. Natl. Acad. Sci. USA, 105, 18182-18187, 2008
 doi: 10.1073/pnas.0805083105

30. M. R. Hasan, T. Tosha and E. C. Theil “Ferritin Contains Less Iron (59Fe) in Cells When the Protein Pores are Unfolded by Mutation” J. Biol. Chem., 283, 31394-31400, 2008
 doi: 10.1074/jbc.M806025200

29. J. K. Schwartz, X. Liu, T. Tosha, E. C. Theil and E. I. Solomon “Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs. Cofactor Active Sites” J. Am. Chem. Soc., 130, 9441-9450, 2008
 doi: 10.1021/ja801251q

28. T. Kurahashi, A. Kikuchi, T. Tosha, Y. Shiro, T. Kitagawa and H. Fujii “Transient Intermediate from Mn(salen) with Sterically Hindered Mesityl Groups: Interconversion between MnIV-Phenolate and MnIII-Phenoxyl Radical as an Origin for Unique Reactivity” Inorg. Chem., 47, 1674-1686, 2008
 doi: 10.1021/ic702061y

27. T. Tosha, N. Kagawa, M. Arase, M. R. Waterman and T. Kitagawa “Interaction between Substrat and Oxygen Ligand Responsible for Effective O-O Bond Cleavage in Bovine Cytochrome P450 Steroid 21-hydroxylase Proved by Raman Spectroscopy” J. Biol. Chem., 283, 3708-3717, 2008
 doi: 10.1074/jbc.M707338200

26. S. Ichimura, T. Uchida, S. Taniguchi, S. Hira, T. Tosha, I. Morishima, T. Kitagawa and K. Ishimori. “Unique Peroxidase Reaction Mechanism in Prostaglandin Endoperoxide H Synthase-2; Compound I in Prostaglandin Endoperoxide H Synthase-2 can be Formed without Assistance by Distal Glutamine Residue.” J. Biol. Chem., 282, 16681-16690, 2007
 doi: 10.1074/jbc.M610785200

25. W. J. Song, M. S. Seo, S. DeBeer George, T. Ohta, R. Song, M.-J. Kang, T. Tosha, T. Kitagawa, E. I. Solomon and W. Nam. “Synthesis, Characterization, and Reactivities of Manganese(V)-Oxo Porphyrin Complexes” J. Am. Chem. Soc., 129, 1268-1277, 2007
 doi: 10.1021/ja066460v

24. M. Yamashita, H. Furutachi, T. Tosha, S. Fujinami, W. Saito, Y. Maeda, K. Takahashi, K. Tanaka, T. Kitagawa and M. Suzuki. “Regioselective Arene Hydroxylation Mediated by a (?-Peroxo)diiron(III) Complex: A Functional Model for Toluene Monooxygenase” J. Am. Chem. Soc., 129, 2-3, 2007
 doi: 10.1021/ja063987z

23. T. Matsumoto, H. Furutachi, S. Nagatomo, T. Tosha, S. Fujinami, T. Kitagawa and M. Suzuki. “Synthesis and Reactivity of (?-?2:?2-Peroxo)dicopper(II) Complexes with Dinucleating Ligands: Hydroxylation of Xylyl Linker with a NIH Shift” J. Organomet. Chem., 692, 111-121, 2007
 doi: 10.1016/j.jorganchem.2006.05.068

22. M. T. Kieber-Emmons, J. Annaraj, M. S. Seo, K. M. Van Heuvelen, T. Tosha, T. Kitagawa, T. C. Brunold, W. Nam and C. G. Riordan. “Identification of an “End-on” Nickel-Superoxo Adduct, [Ni(tmc)(O2)]+” J. Am. Chem. Soc., 128, 14230-14231, 2006
 doi: 10.1021/ja0644879

21. T. Fujii, S. Yamaguchi, Y. Funahashi, T. Ozawa, T. Tosha, T. Kitagawa and H. Masuda. “Mononuclear copper(II)-hydroperoxo complex derived from reaction of copper(I) complex with dioxygen as a model of D?M and PHM” Chem. Commun., 42, 4428-4430, 2006
 doi: 10.1039/b609673e

20. M. Mizuno, K. Honda, J. Cho, H. Furutachi, T. Tosha, T. Matsumoto, S. Fujinami, T. Kitagawa and M. Suzuki. “A Mononuclear Alkylperoxocopper(II) Complex as a Reaction Intermediate in the Oxidation of the Methyl Group of the Supporting Ligand” Angew. Chem. Int. Ed., 45, 6911-6914, 2006
 doi: 10.1002/anie.200602477

19. T. Tosha, N. Kagawa, T. Ohta, S. Yoshioka, M. R. Waterman and T. Kitagawa. “Raman Evidence for Specific Substrate-Induced Structural Changes in the Heme Pocket of Human Cytochrome P450 Aromatase during the Three Consecutive Oxygen Activation Steps” Biochemistry, 45, 5631-5640, 2006
 doi: 10.1021/bi060094a

18. T. Tosha, T. Uchida, A. R Brash and T. Kitagawa. “On the Relationship of Coral Allene Oxide Synthase to Catalase: a Single Active Site Mutation That Induces Catalase Activity in Coral Allene Oxide Synthase.” J. Biol. Chem., 281, 12610-12617, 2006
 doi: 10.1074/jbc.M600061200

17. H. Fujii, S. T. Kurahashi, T. Tosha, T. Yoshimura and T. Kitagawa. “17O NMR Study of Oxo Metalloporphyrin Complexes Correlation with Electronic Structure of M=O Moiety” J. Inorg. Biochem., 100, 533-541, 2006
 doi: 10.1016/j.jinorgbio.2006.01.009

16. T. Matsumoto, H. Furutachi, M. Kobino, M. Tomii, S. Nagatomo, T. Tosha, T. Osako, S. Fujinami, S. Itoh, T. Kitagawa and M. Suzuki. “Intramolecular Arene Hydroxylation versus Intermolecular Olefin Epoxidation by (?-?2:?2-Peroxo)dicopper(II) Complex Supported by Dinucleating Ligand” J. Am. Chem. Soc., 128, 3874-3875, 2006
 doi: 10.1021/ja058117g

15. J. Cho, H. Furutachi, S. Fujinami, T. Tosha, H. Ohtsu, O. Ikeda, A. Suzuki, M. Nomura, T. Uruga, H. Tanida, T. Kawai, K. Tanaka, T. Kitagawa and M. Suzuki. “Sequential Reaction Intermediates in Aliphatic C-H Bond Functionalization Initiated by a Bis(?-oxo)dinickel(III) Complex” Inorg. Chem., 45, 2873-2885, 2006
 doi: 10.1021/ic0514243

14. Y. Suh, M. S. Seo, K. M. Kim, Y. S. Kim, H. G. Jang, T. Tosha, T. Kitagawa, J. Kim and W. Nam. “Nonheme Iron(II) Complexes of Macrocyclic Ligands in the Generation of Oxoiron(IV) Complexes and the Catalytic Epoxidation of Olefins” J. Inorg. Biochem., 100, 627-633, 2006
 doi: 10.1016/j.jinorgbio.2005.12.013

13. T. Kurahashi, Y. Kobayashi, S. Nagatomo, T. Tosha, T. Kitagawa and H. Fujii. “Oxidizing Intermediates from the Sterically Hindered Iron Salen Complexes Related to the Oxygen Activation by Nonheme Iron Enzymes” Inorg. Chem., 44, 8156-8166, 2005
 doi: 10.1021/ic051377e

12. T. Osako, S. Terada, T. Tosha, S. Nagatomo, H. Furutachi, S. Fujinami, T. Kitagawa, M. Suzuki and S. Itoh. “Structure and Dioxygen-Reactivity of Copper(I) Complexes Supported by Bis(6-methylpyridin-2-yl-methyl)amine Tridentate Ligands” Dalton Trans., 21, 3514-3521, 2005
 doi: 10.1039/b500202h

11. K. Ito, H. Hayashi, H. Furutachi, T. Matsumoto, S. Nagatomo, T. Tosha, S. Terada, S. Fujinami, M. Suzuki and T. Kitagawa. “Synthesis and Reactivity of a (?-1,1-Hydroperoxo)(?-hydroxo)dicopper(II) Complex: Ligand Hydroxylation by a Bridging Hydroperoxo Ligand” J. Am. Chem. Soc., 127, 5212-5223, 2005
 doi: 10.1021/ja047437h

10. K. Matsuura, S. Yoshioka, T. Tosha, H. Hori, K. Ishimori, T. Kitagawa, I. Morishima, N. Kagawa and M. R. Waterman. “Structural Diversities of Active Site in Clinical Azole-Bound Forms between Sterol 14?-Demethylases (CYP51s) from Human and Mycobacterium tuberculosis” J. Biol. Chem., 280, 9088-9096, 2005
 doi: 10.1074/jbc.M413042200

9. K. Matsuura, T. Tosha, S. Yoshioka, S. Takahashi, K. Ishimori and I. Morishima. “Structural and Functional Characterization of “Laboratory Evolved” Cytochrome P450cam Mutants Showing Enhanced Naphthalene Oxygenation Activity” Biochem. Biophys. Res. Commun., 323, 1209-1215, 2004
 doi: 10.1016/j.bbrc.2004.08.221

8. S. Nagano, T. Tosha, K. Ishimori, I. Morishima and T. L. Poulos. “Crystal Structure of the Cytochrome P450cam Mutant that Exhibits the same Spectral Perturbations Induced by Putidaredoxin Binding.” J. Biol. Chem., 279, 42844-42849, 2004
 doi: 10.1074/jbc.M404217200

7. T. Tosha, S. Yoshioka, K. Ishimori and I. Morishima. “L358P Mutation on Cytochrome P450cam Simulates Structural Changes upon Putidaredoxin Binding. The Structural Changes Trigger Electron Transfer to Oxy-P450cam from Electron Donors.” J. Biol. Chem., 279, 42836-42843, 2004
 doi: 10.1074/jbc.M404216200

6. T. Tosha, S. Yoshioka, S. Takahashi, K. Ishimori, H. Shimada and I. Morishima. “NMR Study on the Structural Changes of Cytochrome P450cam upon the Complex Formation with Putidaredoxin: Functional Significance of the Putidaredoxin-induced Structural Changes” J. Biol. Chem., 278, 39809-39821, 2003
 doi: 10.1074/jbc.M304265200

5. T. Tosha, S. Yoshioka, H. Hori, S. Takahashi, K. Ishimori and I. Morishima. “Molecular Mechanism of the Electron Transfer Reaction in Cytochrome P450cam-Putidaredoxin: Roles of Glutamine 360 at the Heme Proximal Site” Biochemistry, 41, 13883-13893, 2002
 doi: 10.1021/bi0261037

4. S. Yoshioka, T. Tosha, S. Takahashi, K. Ishimori, H. Hori and I. Morishima. “Roles of the Proximal Hydrogen Bonding Network in Cytochrome P450cam-Catalyzed Oxygenation” J. Am. Chem. Soc., 124, 14571-14579, 2002
 doi: 10.1021/ja0265409

3. Y. G. Park, T. Tosha, S. Fujita, B. Zhu, H. Iwata and H. W. Ryu. “Effect of Low Temperature Preservation and Cell Density on Metabolic Function in a Bioartificial Liver” Biotech. Bioproc. Eng., 8, 41-46, 2003
 doi: 10.1007/BF02932897

2. T. Sajiki, H. Iwata, H. J. Paek, T. Tosha, S. Fujita, Y. Ueda, Y. G. Park, B. Zhu, S. Satoh, I. Ikai, Y. Yamaoaka, Y. Ikada. “Transmission Electron Microscopic Study of Hepatocytes in Bioartificial Liver” Tissue Eng., 6, 627-640, 2000
 doi: 10.1089/10763270050199578

1. T. Sajiki, H. Iwata, H. J. Paek, T. Tosha, S. Fujita, Y. Ueda, Y. G. Park, B. Zhu, S. Satoh, I. Ikai, Y. Yamaoaka, Y. Ikada. “Morphologic Studies of Hepatocytes Entrapped in Hollow Fibers of a Bioartificial Liver” ASAIO J., 46, 49-55, 2000
 doi: 10.1097/00002480-200001000-00014


・総説
16. 當舎武彦 “光解離性ケージド基質を利用した時間分解構造解析による酵素反応の可視化” YAKUGAKU ZASSHI, 142, 487-494, 2022
 doi: 10.1248/yakushi.21-00203-2

15. T. Tosha, R. Yamagiwa, H. Sawai and Y. Shiro “NO Dynamics in Microbial Denitrification System” Chem. Lett., 50, 280-288, 2021
 doi: 10.1246/cl.200629

14. M. Suga, A. Shimada, F. Akita, J.R. Shen. T. Tosha and H. Sugimoto “Time-resolved studies of metalloproteins using X-ray free electron laser radiation at SACLA” Biochim. Biophys. Acta ? Gen. Subj., 1864, 129466, 2020
 doi: 10.1016/j.bbagen.2019.129466

13. 當舎武彦、久保 稔 “SACLAを利用した酵素反応の可視化” 生物物理、59, 205-207, 2019
 doi: 10.2142/biophys.59.205

12. 當舎武彦“酵素タンパク質複合体形成による効率的な細胞内連続化学反応” (ディビジョン・トピックス(生体機能関連化学・バイオテク)) 化学と工業:6月号p497, 2018

11. E. C. Theil, T. Tosha and R. K. Behera “Solving Biology’s Iron Chemistry Problem with Ferritin Protein Nanocages” Acc. Chem. Res., 49, 784-791, 2016
 doi: 10.1021/ar500469e

10. 日野智也,松本悠史,當舎武彦,杉本 宏,永野真吾,城 宜嗣 “一酸化窒素還元酵素の結晶構造と呼吸酵素の分子進化” 化学と生物, 51, 679-685, 2013

9. T. Tosha and Y. Shiro “Crystal Structures of Nitric Oxide Reductases Provide Key Insights into Functional Conversion of Respiratory Enzymes” IUBMB Life, 65, 217-226, 2013
 doi: 10.1002/iub.1135

8. E. C. Theil, R. K. Behera and T. Tosha “Ferritins for Chemistry and for Life” Coord. Chem. Rev., 257, 579-586, 2013
 doi: 10.1016/j.ccr.2012.05.013

7. 松本悠史,當舎武彦,城 宜嗣 “キノール依存型一酸化窒素還元酵素の結晶構造からみた呼吸酵素の分子進化” 新着論文レビュー, http://first.lifesciencedb.jp/archives/4335#more-4335, 2012

6. 日野智也, 當舎武彦, 城 宜嗣 “一酸化窒素還元酵素の構造から見えてきた呼吸酵素の機能変換” 生物物理, 1817, 1914-1920, 2012
 doi: 10.2142/biophys.52.186

5. Hino, S. Nagano, H. Sugimoto, T. Tosha and Y. Shiro “Molecular Structure and Function of Bacterial Nitric Oxide Reductase” Biochim. Biophys. Acta, 1817, 680-687, 2012
 doi: 10.1016/j.bbabio.2011.09.021

4. Y. Shiro, H. Sugimoto, T. Tosha, S. Nagano and T. Hino “Structural Basis for Nitrous Oxide Generation by Bacterial Nitric Oxide Reductases” Phil. Trans. Royal Soc. B, 367, 1195-1203, 2012
 doi: 10.1098/rstb.2011.0310

3. S. Haldar, T. Tosha and E. C. Theil “Moving Iron in Ferritin: Leucine 154, a Residue Near Fe(III) During Mineral Buildup Minimizes Mineral Dissolution” Indian J. Chem. Sect. A, 50, 414-419, 2011

2. E. C. Theil, X. S. Liu and T. Tosha “Gated Pores in the Ferritin Protein Nanocage” Inorg. Chim. Acta, 361, 868-874, 2008
 doi: 10.1016/j.ica.2007.08.025

1. 當舎武彦,石森浩一郎,森島 績 “プチダレドキシン結合によるP450camの酸素添加反応の制御機構” 生物物理, 45, 78-83, 2005
 doi: 10.2142/biophys.45.78


・著書
7. 當舎武彦、木村哲就 第1編、第5章、第5節 反応速度論、ヘムタンパク質の科学 生理機能の理解とその展開に向けて (エヌ・ティー・エス)城 宜嗣、青野重利、斎藤正男監修, p219-225, 2022
 ISBN: 978-4-86043-778-7 C3045

6. 内田 毅、當舎武彦 第1編、第5章、第1節 振動(共鳴ラマン・赤外・NRVS)分光、ヘムタンパク質の科学 生理機能の理解とその展開に向けて (エヌ・ティー・エス)城 宜嗣、青野重利、斎藤正男監修, p181-191, 2022
 ISBN: 978-4-86043-778-7 C3045

5. 當舎武彦、城 宜嗣 第1編、第1章、第2節 脱窒反応系:ヘムタンパク質によるN-N結合の再生、ヘムタンパク質の科学 生理機能の理解とその展開に向けて (エヌ・ティー・エス)城 宜嗣、青野重利、斎藤正男監修, p23-30, 2022
 ISBN: 978-4-86043-778-7 C3045

4. 城 宜嗣、澤井仁美、當舎武彦 第4章、第2節 生体鉄の分子科学と細胞生物学、生命金属ダイナミクス 生体内における金属の挙動と制御 (エヌ・ティー・エス)城 宜嗣、津本浩平監修, p126-138, 2022
 ISBN: 978-4-86043-706-0

3. T. Tosha and Y. Shiro “Structure and Function of Membrane-bound Bacterial Nitric Oxide Reductases” in Dioxygen-dependent Heme Enzymes (Royal Society of Chemistry Metallobiology Series No. 13), M. Ikeda-Saito and E. Raven Ed., p334-350, 2019
 doi: 10.1039/9781788012911-00334, ISSN: 2045547X

2. T. Tosha and Y. Shiro “Structure and Function of Nitric Oxide Reductases” in Metalloenzymes in Denitrification: Applications and Environmental Impacts (Royal Society of Chemistry Metallobiology Series), I. Moura, J. J. G. Moura, S. R. Pauleta and L. B. Maia, Ed., p114-140, 2016
 doi: 10.1039/9781782623762-00114, ISSN: 2045547X

1. 當舎武彦、19章 バイオミネラリゼーション、クライトン生物無機化学 Robert R. Crichton著、塩谷光彦監訳、2016