特集

電子線トモグラフィー

細胞・オルガネラレベルでの電子線トモグラフィー

峰 雪 芳 宣 *, 唐 原 一 郎 •

*広島大学大学院理学研究科, *富山大学理学部

キーワード:加圧凍結,2軸電子線トモグラフィー,超高圧電子顕微鏡,細胞骨格,植物細胞

1. はじめに

Cryo-ET (cryoelectron tomography) に代表される様に, 細胞内の分子が運動する前に急速に凍結した細胞を電子顕微 鏡で様々な角度から撮像、コンピュータートモグラフィーの 原理で立体再構成する方法は、分子と細胞下レベルのギャッ プを埋める高分子集合体の3次元構造解析の手段として最近 注目を集めている技術である.細胞配列パターン形成機構の 研究の様に、周りの細胞の位置関係を考えながら特定の細胞 の特定の領域を観察する必要がある場合、厚い組織をうまく 凍結する必要があること, また, 出来た試料から電子顕微鏡 下で目的の細胞(あるいは領域)を探すのに時間がかかると いう問題がある.本稿では、植物の細胞分裂パターン決定に 関与する微小管装置である分裂準備帯(preprophase band) 研究で、細胞骨格や膜系、その周りの分子集合体の関係を十 分な分解能を保持しながら、広い範囲で3次元定量解析を行 う目的で我々が使用している、加圧凍結・2 軸電子線トモグ ラフィー法について紹介する.

2. 加圧凍結・2 軸電子線トモグラフィー法

高分子や細胞性粘菌の様な薄い単独の細胞を見る cryo-ET¹⁾の場合,試料を直接低温のプロパンかエタン溶液中に 浸漬して凍結し,低温のまま電子顕微鏡で観察しトモグラ フィー用の画像を取得する.しかし,組織の中の特定の細胞 や部位を観察するためには,厚い組織を瞬時に凍結する必要 がある.また,目的の部位を見つけるのに,電子顕微鏡での 比較的長時間の観察,撮像が必要なため,その間の試料のダ メージを最小にする工夫も必要である.我々は凍結した試料 をプラスチック樹脂に包埋し,そこから作製した切片を電子 線トモグラフィー用として使用している.

Yoshinobu Mineyuki and Ichirou Karahara: Electron tomography for cell and organelle level *〒739-8526 東広島市鏡山 1-3-1 TEL: 0824-24-7391; FAX: 0824-24-0734

*E-mail: mineyuk@hiroshima-u.ac.jp 2003 年 12 月 16 日受付

特集 細胞・オルガネラレベルでの電子線トモグラフィー

2.1 加圧凍結と凍結置換・樹脂包埋法

試料の凍結は加圧(高圧)凍結法²を用いている. 2,100 bar の高圧下では細胞内の氷の結晶の成長が遅くなる分,加圧 凍結法は他の急速凍結法に比べ,圧倒的に広い範囲で良い凍 結像が得られる. 植物細胞は細胞壁を持つため動物細胞に比 ベ凍結が難しい. 加圧凍結法を用いると,植物でも表面から 0.2 mm まで確実に凍結できる(方法の詳細は文献3参照).

本研究では、いったん樹脂に包埋して切片を作って観察す るため、凍結後、凍結置換・樹脂包埋の過程で目的の構造が 壊れないよう十分配慮が必要である。細胞質内で束になって いないアクチン繊維(マイクロフィラメント)は、植物細胞 で最もこわれ易い構造の一つである。我々は凍結した試料を 下記の順序で処理することで、細胞質のマイクロフィラメン トも再現性良く保存できるようになった⁴.

 $\langle 方法 \rangle$ アセトンに溶かした 2% OsO₄ 中で, -80° C (2~3 日) ⇒ -20° C(1日) ⇒ 4° C(一晩) ⇒室温 (1時間) ⇒ 40° C(4 時間) ⇒ 4° C アセトン溶液で洗浄⇒ 4° C メタノールに溶かし た 5%酢酸ウラン (2時間) ⇒徐々に spurr 樹脂に置換.

2.2 トモグラフィー用画像の取得

樹脂に包埋した試料から 250 nm 厚の切片を作製し、フォ ルムバール膜を張ったスロットメッシュの中央に載せ、酢 酸ウランと鉛で染色した後、トモグラフィー用の位置合わせ に使用する目的で、試料の載ったメッシュの両側に 10nm あ るいは 15nm の金粒子をまぶせる. 必要に応じて、あらかじ めカーボンコートしてフォルムバール膜を補強する. この試 料は電子顕微鏡で予備観察を行い、目的の場所を見つけ、そ の場所の低倍の画像を記録しておく、トモグラフィー用の画 像取得のために、コロラド大学の超高圧電子顕微鏡(750kV の加速電圧で使用)⁵⁾,あるいは FEI の 300kV の電子顕微鏡 (Tecnai TF 30)を使用している(これらの電子顕微鏡の詳細 はホームページ⁵⁾ 参照). 試料を-60度から+60度まで1.5 度ステップで回転しながら連続画像を取得した後、試料を水 平の位置に戻し、水平方向に 90 度回転し、再度-60 度から +60度まで別の軸で回転して2組の連続画像を取得し、2軸 トモグラフィー法⁶⁾を使って3次元画像を構築する.2組の データーを結合させることで、分解能を上げることができ る. 超高圧電子顕微鏡に装備しているカメラは画素数が 1k

×1k のため、広い範囲を解析するためには、画像取得の際 に4枚または6枚の画像をモンタージュして1枚の画像とし て扱う. Tecnai TF30 は2k×2k のカメラを装着しており、 超高圧電子顕微鏡で4枚のモンタージュ写真相当の画像が、 モンタージュなしでとれ、作業の効率が良い.

2.3 トモグラフィー作製・解析用ソフト IMOD

2.2 の方法で取得した画像データーを別のコンピューター に転送し、そこでトモグラフィー作製を行う. 作製および それ以降のモデル作製には、The Boulder Laboratory for 3-D Electron Microscopy of Cells で開発された IMOD⁷⁾ を使用し ている. このプログラムは, 画像取得の際に, 試料の傾斜 角や位置が少々ずれても金粒子で位置補正が可能なこと, ま た, コンピューターを選べば, 大容量の画像を扱える特徴が あり, Linux, MacOSX, Windows で動作可能である⁵⁾.

3. 成 果

植物細胞は動物と異なり、細胞の配列パターンの決定要因 である細胞分裂面の挿入位置は核分裂前に決定する.分裂前 期には、将来細胞板が親の細胞壁と接続する予定位置に分裂 準備帯と呼ばれる微小管が帯状に配向した構造が見られる.

図1 播種後4日目のタマネギ子葉基部の表皮細胞表層の分裂準備帯. Tecnai TF 30 で取得した画像から2軸トモグラムを作製. 図は約2,000×2,000×200 pixel(1 pixel が 1.07 nm に相当)の立体画像の一つの x-y 平面像(図1 では画像右側一部省略している) である. 表皮細胞表層の接線縦断面で,中央が細胞質,両端は細胞の外側の細胞壁(CW)の部分に当たる. 細胞質側には微 小管(MT)が平行に走り,微小管の端(矢尻)も見える. 細胞表層にある被覆ビット(白線で囲った領域),クラスリン被 覆小胞(白の点線で囲った領域),非クラスリン型の小胞(黒線で囲った領域)も明確に識別できる. Bar=200 nm.

この微小管の構築過程で分裂面挿入位置が決定するため、 (1) 微小管がなぜこの位置に並ぶのか、その機構の解明は 重要である.また、核分裂が開始すると分裂準備帯は消失す るが、分裂の最後で確実に細胞板はその位置を認識してその 方向に伸長するため、(2) どのようにしてその位置情報が分 裂準備帯に蓄積されるのかを解明することも重要である⁸. (1) の研究には、重合・脱重合など、微小管のダナミック スを反映して変化する微小管の端の構造を調べ、重合、脱 重合状態の微小管がどれだけ存在するのか調べる必要があ る. (2) の研究には、分裂準備帯中に存在する小胞の種類や その出現頻度を調べる必要がある、そこで、これらの構造が 明確に識別でき、かつ、できるだけ広い範囲を観察できる倍 率でトモグラムを作製する必要がある.我々はこれに合う条 件として、以下の2つの方法で分裂準備帯のトモグラムを作 製している.超高圧電子顕微鏡の場合,CCD カメラから得 た4枚または6枚の写真をモンタージュしたものを一つの画 像として扱っている.4枚のモンタージュ写真にした場合, 2,800×2,800×250nm の領域を 1.42nm/pixel で立体再構成で きた. Tecnai TF30 ではモンタージュなしで、2.200×2.200 ×250nm の領域を 1.07nm/pixel で立体再構成できた. 図1 は Tecnai TF 30 でのトモグラムからとった x - y 平面の1枚 の切片で、実際のトモグラムのデーターはこの様な切片が z軸方向に約200枚並んだ像となる.この写真から必要な情 報を取り出し、モデルを作れば、様々な構造の3次元モデル を作ることが可能である.この条件で微小管の端の構造や被 覆小胞や被覆ピットがはっきりと区別できる. 一個のトモグ ラムに39個の微小管端と124個の小胞が観察でき、適当な 分解能で微小管端や小胞の定量的解析が可能になった.小胞 のタイプの細胞膜からの距離等の解析から、分裂準備帯では エンドサイトーシスが活発なことが明らかになった.また. 微小管端は、チューブリンが重合中と思える open sheet、端 が湾曲していない blunt end, 脱重合中と思える coiled end, γチューブリン複合体から微小管が形成していると思われる capped end 構造が区別でき、その頻度も測定できた(図2).

4. おわりに

凍結法の発達により、より真実に近い状態で分子や細胞内 の構造が電子顕微鏡レベルで観察できるようになった.加圧 凍結と樹脂包埋した試料を使ったトモグラフィーの技術を併 用することで、組織レベルでの研究でも比較的広い領域を十 分な分解能で3次元定量解析ができるようになった(図1). この技術は今後動物、植物を問わず、様々な組織、細胞レベ ルの研究に重要な技術になっていくと思われる.

謝 辞

本研究は主に日本学術振興会/NSFの日米科学協力事業 共同研究と日本学術振興会科学研究費で行い, The Boulder Laboratory for 3-D Electron Microscopy of Cellsの電子顕微鏡 を使用した. 共同研究者 L. Andrew Staehelin 博士, 及びコ ロラド大学の関係諸氏に感謝いたします.

(Number of MT end /total 39 MT end)

図2 4つの微小管端のモデル (A1 ~ A4) とそれに対応する と思われるタマネギ子葉表皮の分裂準備帯の電子線トモグラ フィーで得られた画像 (B1 ~ B2). 矢尻で示した部分が微小 管端で,矢印は微小管の伸長方向を示している. 図下の百分率 (%) と分数は、39 個の微小管端が同定できた一個のトモグラ ムでの各タイプの出現頻度と個数を示している. Bar=50 nm.

文 献

- Medalia, O., Weber, I., Frangakis, A.S., Nicastro, D., Gerisch, G. and Baumeister, W.: Science, 298, 1209–1213 (2002)
- 2)村田長芳, 菅沼龍夫, 峰雪芳宣:電子顕微鏡, 35, 109-110 (2000)
- 峰雪芳宣, 唐原一郎, 村田 隆, Otegui, M. and Staehelin, L.A.: 電子顕微鏡, 36, 105-107 (2001)
- Murata, T., Karahara, I., Kozuka, T., Giddings, Jr., T.H., Staehelin, L.A. and Mineyuki, Y.: J. Electron Microsc., 51, 133–136 (2002)
- 5) http://bio3d.colorado.edu/
- 6) Mastronarde, D.N.: J. Struct. Biol., 120, 343-352 (1997)
- Kremer, J.R., Mastronarde, D.N. and McIntosh, J.R.: J. Struct. Biol., 116, 71–76 (1996)
- 8) Mineyuki, Y.: Inter. Rev. Cytol., 187, 1-49 (1999)